AI+医学影像应用全景扫描:自动识别病灶,还支持放射治疗、手术路径规划等

  • 2020-04-26
  • John Dowson

自自动驾驶技术取得重大突破以来,人们就对城市交通充满了无限的想象力。换做是十年前,无人驾驶还被当作是笑话。而现在,大部分拥有自动驾驶技术的汽车、卡车和公共汽车能在广阔的道路撕掉她的内衣撕光

AI+医学影像应用全景扫描:自动识别病灶,还支持放射治疗、手术路径规划等撕掉她的内衣撕光

原标题:AI+医学影像应用全景扫描:自动识别病灶,还支持放射治疗、手术路径规划等

 

timg?image&quality=80&size=b9999_10000&sec=1588453917411&di=b81144a3f4b1ba3a6a030f8a5ea0c2a8&imgtype=0&src=http%3A%2F%2Fe.hiphotos.baidu.com%2Fnews%2Fw%3D638%2Fsign%3D404c2cbd3c292df597c3af1684305ce2%2Ffc1f4134970a304ef1bd4968d7c8a786c8175c81.jpg

作者 |付海天、樊晓芳

医学影像是医疗数据最密集的领域,医疗数据中超过80%来源于医学影像,人工智能技术已经应用在医疗行业多个领域,但医学影像是应用最成熟的领域之一。深度学习算法模型的训练需要海量数据支撑,医学影像由于其数据密集的特性,让以深度学习为代表的人工智能技术有了广阔的发挥空间,而其中又以X光、CT等类型影像的识别分析最为成熟。

 

医学影像成像设备及医学影像信息系统

封闭的医疗体系已经无法满足医学影像AI快速发展的需要,医疗机构、影像AI开发商等各方协作与联合成为必然趋势。医学影像算法模型的训练需要以大量的优质标注数据为基础,单个医院的影像数据难以满足影像AI模型训练的要求,医联体和区域影像中心的建立为影像数据流通和数据价值发挥奠定了坚实基础,多地也已成立区域级的影像联盟,促进了医学影像技术交流和数据流通。

政策开闸是医学影像AI产品走向商业化的重要因素。2017年8月,CFDA发布了新版《医疗器械分类目录》,新增了与人工智能辅助诊断相对应的类别,医学影像AI产品开始进入审批通道,个别企业获得了二类器械许可证并开启了初步的商业化,但医学影像AI产品的三类器械许可证审批始终引而不发。2019年7月器审中心发布了《深度学习辅助决策医疗器械软件审评要点》,对医疗AI产品的数据质量控制、算法泛化能力、临床使用风险等问题进行了规定,相关医学影像AI产品的审批也进入了绿色通道。2020年1月,国家药品监督管理局审查批准了我国首个应用人工智能技术的三类器械-冠脉血流储备分数计算软件的注册,与此同时,其它多个医学影像AI产品也正在注册审批队列中。随着医学影像AI产品三类器械许可证的审批加速,医学影像AI产品商业化将迎来一波新的发展浪潮。

机器之心希望通过本报告《开启医学智慧之眼——医学影像中人工智能技术应用现状及展望》,介绍现有人工智能技术在医学影像中的应用现状、未来技术发展及落地应用趋势,向医学影像AI产品开发商、医护人员、医学影像设备制造商、算法工程师等相关从业者提供详实的调研参考,并帮助读者对该领域形成系统性见解。

报告目录

 

部分应用案例

4.1.1 乳腺癌

乳腺 CAD 被广泛应用于 X 线摄影诊断乳腺癌的过程,主要用于提高钙化灶和肿块被检出的精准性,钙化是乳腺癌早期的重要表现,肿块是乳腺癌的直接定位依据。乳腺 CAD 对钙化点检测效果比较理想,但在肿块检测方面,由于早期的隐匿性乳腺癌肿块尺度较小、边缘模糊、对比度低,与正常乳腺组织极其相似,辨识特征不太明显。

4.2.1 CT 三维重建

常规 CT 二维图像缺乏三维空间观感效果,对病变特征的显示受到了较大的局限。三维重建成像是基于高质量横断面扫描影像的技术,随着高速扫描技术的发展为三维重建成像提供了可能。医学三维重建技术涉及到医学影像学、计算机图像处理、生物医学工程等多项技术,三维重建成像不仅有助于疾病诊断,也可为术前判断提供依据,从而确定手术方案, 特别是病灶空间位置及手术入路的选择,二维图像不易观察,而三维重建可从多个角度整体观察。

• GE Lightspeed 64 排螺旋 CT 机可以直观地从不同角度观察骨折部位、骨折线走向及移位情况。在对髁状突骨折患者进行扫描时,患者取仰卧位,头先进方式,扫描范围为眶下缘至下颌骨下缘,常规扫描后应用 Volume Rending 软件将原始图像重建,将重建的薄层数据图像传至后台工作站,运用多平面成像技术 (multiple planner reconstruction,MPR) 和容积再现技术 (volume rendering technique,VRT),进行三维重建。根据患者骨折的类型,选择部位进行适当旋转切割,除去异物及多余部分,显示患者骨折部位及相关形态结构。

4.3.1 靶区自动勾画

• 柏视医疗开发的鼻咽癌放疗临床靶区自动勾画系统通过机器学习方法,采用小样本集数据训练模型,并运用知识图谱和深度学习的知识完成模型的训练,可对 GTV(肿瘤区)和 CTV(临床靶区)进行自动勾画。在充分保证靶区勾画精准度的前提下,可将勾画时间从数小时缩短到几分钟,大大提高了临床医生的诊疗效率。

4.4.1 手术规划

数字化技术在外科手术中的应用越来越重要,在手术前进行科学规划,能够帮助克服外科医生的视觉局限,使数据测量更加精准,诊断更为精确,手术更加精准、更加高效。手术规划的一个重要手段就是三维重建技术。通过术前手术规划,医师能根据手术需要对三维模型进行移动、旋转、透明化等操作,任意调整观察角度,直观地了解病灶。再通过虚拟现实交互技术进行模拟手术,对手术方案进行反复操作并不断修正,显著降低手术风险、减少术中决策时间,提高手术成功率。

• 博为肝脏三维手术规划系统解决了肝脏切除手术方案设计困难问题,通过对原始的 CT 数据进行后处理重建为三维立体图像,精准肝脏分割(门静脉、肝静脉分割清晰)与分段(奎诺 8 段),自动提取肿瘤病脏,精准直观地展示肝脏肿瘤、肝段、肝脏内部复杂的管道解剖结构,对病例进行全面精准的量化分析,并自动生成临床脏器定量分析报告。

4.5.1 神经外科机器人

已经商用化的神经外科机器人都采用术前医学图像导航的方式对机器人进行引导定位,由于脑组织在手术过程中会因颅内压力变化而发生变形和移位,这就不可避免的引起定位误差。因此将现有的定位机构与术中导航方式相结合是神经外科机器人研究的主要方向。

• 美国 Pathfnder Technologies 公司的 Pathfnder 神经外科机器人在 2004 年通过了美国 FDA 认证,用于完成常规的脑外科立体定向手术,医生可通过该系统在术前医学影像的指导下确定靶点位置和穿刺路径,机器人可完成定位并操作手术工具到制定目标,末端针尖定位精度达到亚毫米级别。

4.6.1 医学影像数据平台

医学影像数据挖掘的主要目标是从中提取出图片的自身特征,包括语义、质量、关联度、实体义项等。影像大数据平台应用计算机视觉、数据挖掘技术,对包括结构性和非结构性数据在内的影像大数据进行集成,实现集中管理和更好的资源配置,对医学影像进行深入分析、建模和评估,深入开发影像数据价值。

4.7.1 细胞病理学研究

细胞病理学是以组织学为基础,研究组织碎片、细胞群团、单个细胞的形态和结构、以及细胞间比邻关系并探讨组织来源的一门科学。细胞病理学包括两大部分,脱落细胞学 (Exfoliative Cytology) 和针吸细胞学或称小针穿细胞学 (Fine Needle Aspiration Cytology or Fine Needle Aspiration Biopsy ,缩写 FNAC)。一般在病理科内设有细胞学室。当临床医师开出细胞学检查送检单后,由细胞学室完成细胞检查。

报告如何获取?

本报告《开启医学智慧之眼——医学影像中人工智能技术应用现状及展望》是机器 之心产业研究团队推出的《「智周」人工智能技术应用报告系列》之一。

本系列报告全部被收录于 人工智能领域专业信息及数据平台 「机器之心Pro」 。

访问「机器之心Pro」,认证成为专业用户,即可免费获取报告。

pro.jiqizhixin.com

PC访问,体验更佳

撕掉她的内衣撕光 在南京,什么最牛X, 不是你家拆迁分了8套房, 也不是你广场舞斗赢了大妈, 而是你能不费吹灰之力地把娃送进南京任何一所学校。 毕竟,南京的一些学校, 可不是你想上就能上的…… 下面咱就盘

免责声明:本站所有信息均搜集自互联网,并不代表本站观点,本站不对其真实合法性负责。如有信息侵犯了您的权益,请告知,本站将立刻处理。联系QQ:1640731186

评论留言

发表评论